Fast Finite Volume Simulation of 3D Electromagnetic Problems with Highly Discontinuous Coefficients

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Finite Volume Simulation of 3D Electromagnetic Problems with Highly Discontinuous Coefficients

We consider solving three-dimensional electromagnetic problems in parameter regimes where the quasi-static approximation applies and the permeability, permittivity, and conductivity may vary significantly. The difficulties encountered include handling solution discontinuities across interfaces and accelerating convergence of traditional iterative methods for the solution of the linear systems o...

متن کامل

Composite Finite Elements for 3D Elasticity with Discontinuous Coefficients

For the numerical simulation in continuum mechanics the Composite Finite Element (CFE) method allows an effective treatment of problems where material parameters are discontinuous across geometrically complicated interfaces. Instead of complicated and computationally expensive tetrahedral meshing, specialized CFE basis functions are constructed on a uniform hexahedral grid. This is a convenient...

متن کامل

Adaptive Finite Element Methods for Elliptic Problems with Discontinuous Coefficients

Elliptic partial differential equations (PDEs) with discontinuous diffusion coefficients occur in application domains such as diffusions through porous media, electro-magnetic field propagation on heterogeneous media, and diffusion processes on rough surfaces. The standard approach to numerically treating such problems using finite element methods is to assume that the discontinuities lie on th...

متن کامل

Multiscale finite element for problems with highly oscillatory coefficients

In this paper, we study a multiscale finite element method for solving a class of elliptic problems with finite number of well separated scales. The method is designed to efficiently capture the large scale behavior of the solution without resolving all small scale features. This is accomplished by constructing the multiscale finite element base functions that are adaptive to the local property...

متن کامل

An adaptive discontinuous finite volume method for elliptic problems

An adaptive discontinuous finite volume method is developed and analyzed in this paper. We prove that the adaptive procedure achieves guaranteed error reduction in a meshdependent energy norm and has a linear convergence rate. Numerical results are also presented to illustrate the theoretical analysis. © 2011 Elsevier B.V. All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Scientific Computing

سال: 2001

ISSN: 1064-8275,1095-7197

DOI: 10.1137/s1064827599360741